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We have studied the Potts spin glass with two-state Ising spins-atate Potts variables using a cluster
Monte Carlo dynamics. The model recovers thé Ising spin glasgSG) for s=1 and exhibits for als a SG
transition afT sg(s) and a percolation transition at higher temperafiyes). We have shown that for all values
of s#1 atTy(s) there is a thermodynamic transition in the universality class of a ferromagsnstate Potts
model. The efficiency of the cluster dynamics is compared with that of standard spin-flip dynamics.
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I. INTRODUCTION nonexponential relaxation functions.
SinceT, is less than but close @, andT* is difficult to

In nature there are many examples of glassy systems, i.dqcalize, it is not possible to exclude th& =T, hypothesis.
complex systems that exhibit a very slow dynamics that preHowever, numerical resul{d0,11] on fully frustrated mod-
vents them from reaching the equilibrium state. In this clas®ls, without disorder, where the Randegaal. argument
there is a large variety of systems, such as real glasses, spioes not apply, are consistent with th&=T, scenario. In
glasses, supercooled liquids, polymers, granular materiaRefs.[10,11] this result is given for both spin-flip and bond-
colloids, ionic conductors, orientational glasses, and vorteXlip dynamics. The latter is strictly related to the boinds-
glassed1]. A common feature of these systems is thes-  trated percolation(FP) where frustrated loopsi.e., closed
tration, which is a competition due to geometry or energypaths of connected bonds covering an odd number of nega-
constrains. tive interactions, have zero weight0]. The FP model and

Experiments on glassd&] show that, in a temperature- the +J SG model can be recovered as particular cases of a
driven transition, precursor phenomena start at a temperatuges-state Potts spin glaséPSG [12], respectively, fors
well above the ideal glass transition. This temperature de=1/2 ands=1.
pends on experimental conditions and is the onset of some In this paper we will show numerical results on the static
dynamical anomalies, such as nonexponential relaxatioproperties of the PSG model in two dimensiai@D). For
functions, anomalous diffusion, and cooling-rate-dependerdiny s the model exhibits a SG transition at a temperature
density. Analogous phenomena are present in spin glass@gg(s) (in 2D Tgg=0 for anys) and a FK-CK percolation
(SG9 [3], which are a generalization of the Ising model transition at higher temperatuiig,(s). Fors#1 the higher
where randomly distributed ferromagnetic and antiferromagtransition corresponds to a real thermodynamic transition of
netic interactions give rise to frustration. In particular, ex-ans-state Potts mod¢ll3]. To make the algorithm faster we
periments[4] and numerical simulation§5] have shown use the Swendsen-Wan@W) [14] cluster MC dynamics
nonexponential autocorrelation functions below a temperathat prevent the slowing down for temperatures riggs).
ture T* well above the transition temperatule;, while  Dynamical properties of the model fer=2 are given in Ref.
aboveT* only exponential relaxation functions are seen. [15], where we have shown that autocorrelation times di-

To explain this phenomenon, Randegizal.[6] have sug-  verge atT, and, as in SG model, nonexponential relaxation
gested that in the SG the nonexponential regime starts at thfanctions are present below,. These results on the SG
Griffiths temperaturd ., i.e., the critical temperature of the model[7], the FP mode[10], fully frustrated systemfl1],
ferromagnetic model, due to the presence of randomly largand the PSG mod¢lL5] suggest that the FK-CK percolation
unfrustrated regions, allowed by the disorder in the SG inmay play a role in the context of precursor phenomena since
teractions. Campbell and Bernafdf have proposed an al- below T, the frustration is present at all length scales by
ternative hypothesis in which the ongét of nonexponential means of the FK-CK percolating cluster, which cannot in-
behavior coincides with the percolation temperatlifeof  clude frustrated loops.
Fortuin-Kasteleyn—Coniglio-Klein[8,9] (FK-CK) clusters In Sec. Il we define the Hamiltonian and review some
(defined below. The idea of Ref[7] is that in the SG the theoretical results. In Sec. Ill we present the numerical re-
accessible phase space is simply connected abgyevhile  sults for the model in finite dimensions. In Sec. IV we define
itis not belowT,. Therefore, folT <T, a local Monte Carlo the SW dynamics and compare it with the spin-flip dynam-
(MC) dynamics performs a random walk on a ramified per-ics, verifying the efficiency of the cluster dynamics. In Sec.
colatinglike structure with many time scales, giving rise toV we give the conclusions.
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Il. HAMILTONIAN FORMALISM F(T)— FS(Tp)NA(S)[T—TP(S)]Z_“(S), (5)
The PSG model is defined by the Hamiltonian whereA(s) is an amplitude that vanishes fer-1 anda(s)
is the specific heat exponent.
H= —sJ(iEj> [85,0,(€1,iSiS+1) 2], (D
where associated with each lattice site is an Ising §pin
=1 and ans-state Potts spiro;=1,...,s. The sum is
extended over all nearest-neighlfdiN) sites,¢; ;== 1 is a
random quenched variable, adds the strength of interac-
tion. The model is a superposition of a ferromagnetitate
Potts model[13] and a=*J Ising SG[3] and for 5Uigj=1

[lI. MONTE CARLO RESULTS

We have done our simulation using the SW Monte Carlo
cluster dynamic§14] described in Sec. IV. As we will show,
the SW dynamics is faster than standard local dynamics,
such as spin-flip dynamics, but suffers a slowing down near
the SG critical temperature. Nevertheless, since the SG tran-
sition in 2D occurs affgz=0 [18] and we are interested in

(i.e., s=1) recovers thetJ Ising SG Hamiltonian. studying the system near the percolation transitioriT at
Following Ref.[12], it is possible to define FK-CK clus- >Tsq, the SW dynamics is particularly indicated.
ters on this model, activating a bond, between NN sites with We’ have performed numerical simulation of the PSG

both the SG interaction and Potts interaction satisfied, with, 4ol fors=2 7. and 50 on a two-dimensional square lat-

probability tice with linear sizes ranging frorb=10 to 60 lattice steps
2sJkgT ) and with quenched random interaction configuratioas;.
’ Defining as a MC step an update of all the spins of the

and defining a cluster as the maximal set of connected bond8ystem, we have discarded the data of the first 7500 MC
For a given set of interactionséi J} it is possib|e to StepS and have collected data over 15 000, 25 000, or 50 000

shown[12] that Z can be expressed in terms of bond con-MC steps, depending on the temperatures and sizes.
figurationsC, For eachs we have calculated the Binder parameter for
the energy densiti [19] defined as

Z{e )= 2 e M= Wy(C), 3 (E%
{S ,oi} C V=1— @, (6)

p=1-e"

where W¢(C)=0 if C includes any frustrated loop; other-

wise where the symbol angular brackets stand for the thermal av-
erage. This quantity allows us to localize the transition and to

W,(C)=plCl(1—p)/A(25)N©), (4)  distinguish between first-order and second-order phase tran-

sition. In fact, for a second-order phase transition in the limit

wherep is given in Eq.(2), N(C) is the number of clusters | — o itis V=2/3 for all temperatures, while for a first-order

in the configurationC, |C| is the number of bonds, and phase transition it is

|C|+]|A| is the total number of interactions. Let us observe

that, while the Hamiltoniar(1) is defined only for integer 2 1 (E,—E_)E,+E_)?

values ofs, Eq. (3) is meaningful for every value of and §—me:§ (EZ+E2)? ' (7)

for s=1/2 Eq.(3) gives the partition function of bond FP A

where a bond configuration without frustrated loops has

weight W(C)=ef#ICl with Bu=In(€*-1), while a bond

configuration with frustrated loops has a zero weight. Fur

thermore, in the limis—0 Eq.(3) gives the patrtition func-

tion of thetree percolation13], where any bond configura-

tion with a loop is excluded.

An exact renormalization groufRG) analysis on a hier-
archical lattice[16] has predicted for the PSG two critical
temperatures. The lower temperatirgs(s) corresponds to
a SG transition in the universality class of the) Ising SG
and the highefT ,(s) to a percolation transition in the uni-
versality class of a ferromagnetgstate Potts model. The
same results are given for the fully frustrated version of th
model studied with a mean field approdd?].

Looking at the partition functioli3), one should expect a Y=
singularity atT,(s), for anys#0, due to the singularity in
the number of clusterbl(C). Nevertheless, this singularity
has never been observed in the case of $61(). In fact, (whereN is the total number of Potts spipsnd the specific
the RG calculations in the case=1 show a singularity at heat
Tsg for the SG free energy and no singularityTa(1). This ) 211/2
result is interpreted in Refl16] supposing that the free en- Co— (E9)—(E)
ergy of the Hamiltoniar(1) has the form H N '

Rvhere VM is the minimum value ofV (occurring at the
phase transition temperatyrand E, —E_ is the energy
Jjump, related to the latent heat, at the same temperature.

To estimate the thermodynamic critical exponents for the
second-order phase transition we have measured the Potts
order parameter

M= smax(M;)—1

s—1 ®)

(wherei=1,...s andM; is the density of Potts spins in the
dth statg, the susceptibility

< ©

<|\/|2>—<|\/|>2r'/2

(10
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FIG. 1. PSG model fos=2: Binder paramete¥ vs dimension- FIG. 2. PSG model witls=2: Data collapse foM for systems
less temperaturkgT/J for L=10-60. Errors are smaller than the gjzes| =10-60. Temperatures are kg units. The scaling pa-

symbol sizes. Lines are only guides for the eyes. rameters are given in the figure.

Furthermore, to estimate the percolation critical exponents

1 —Blv _ v
we have calculated the percolation probability per spin M~L fa(T=TILT), (18

where fy,(x) is an universal function of the dimensionless
P=1- 2 kny (11  variablex. Analogous scaling functions are expected for the
K other thermodynamic quantities. Tuning the values of critical
. . : . exponents and, it is possible to verify the scaling hypoth-
(\{vherek is the cluster size f”‘“‘“« Is the density of clusters of esis, as Eq(.18),sfrom the MC data. The values for which the
sizek), the mean cluster size d . : "
ata collapse give the estimates of the critical exponents and
of Ts.
SzE k?n,, (12 In Figs. 2—4 we show the data collapses for system sizes
k L=10-60. The estimated scaling paramef@H are given
in Table I.

The estimated critical exponents are compatible, within
the errors, with the expected values for a Potts model with
Ne=2, ny. (13) the s=2 state, i.e., an Ising model, in 2x=0, B=1/8
=0.125, y=7/4=1.75, andv=1 [22]. The estimated criti-
cal temperature i&kgTs/J=2.95+0.15.

A. Results for s=2 For the FK-CK percolation quantities we have described

In Fig. 1 we show the Binder parameter for the case tr]le C.;'.t'c?l behawotr oP andS mtrodugng a dpirco(ljagorlset
=2 for system sizet =10-60. It is possible to see thst 0 Icr_l ical exponents ;. By, ¥p. andv) defined by the
for small sizes has a minimum &T/J=3.0 and that for relation
greater sizes it becomes constant for all temperatures, reveal-

and the number of clusters

ing a second-order phase transition. Therefore, we can make §PN|T_TP|_V’)’ (19)
a standard scaling analy$®0] for the thermodynamic quan- R
tities. 3 v/v=1.75+£0.1
In particular, by definition of critical exponenisit is “iggl v=1£0.3
= Ts=2.940.1
E~[T-T477, (14 b
_ _ _ . 0.6} 4
whereé is the correlation length anfs=lim, _,.,, T¢(L) with
T4(L) the finite size critical temperature of the PSG model.
Analogously to the definitions of the other critical exponents 0.4} v v Li 60
B, v, anda, we get [ﬁ 8 t;ig
L 0 _
M~|T_TS|B~§*,B/V, (15) 0.2 v A =30
=
| =
~ T—T Y~ ‘y/V, 16 n -_‘.’ [Vas AY®G. Aanw ik AN
x| o ¢ (16) O -mamT 5 100200 3Q0
(T-Tp)L""

Cy~|T—Ty *~gelv. 17

FIG. 3. PSG model witls=2: Data collapse foy for systems

From the standard scaling analysis applied to finite syssizesL =10-60. Temperatures are 3kg units. The scaling pa-
tems[20] we expect forM rameters are given in the figure.
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FIG. 5. PSG model witls=2: Data collapses foP for systems
FIG. 4. PSG model witls=2: Data collapse fo€y for systems sizesL=10-60. Temperatures are dkg units. The scaling pa-
sizesL=10-60. Temperatures are #tkg units. The scaling pa- rameters are given in the figure. The indigesire omitted for the

rameters are given in the figure. critical exponents.
where§,, is the connectedness length of the clusters &nd Tmad L) = Tmad(®®)~L P (23
=lim__,.. Tp(L), with T,(L) the finite size percolation tem-
perature, whereT (L) is the temperature of the maximum Gf; (or
of the mean cluster siz8) for the sizeL andT,,,{(«) is the
p~|T_Tp|Bp~§ng’”p, (200  corresponding value in the thermodynamic limit, i.e., the

corresponding transition temperaturgy(s) [or Ty(s)].
Therefore,T(s) and T,(s) can be evaluated by linear fits
with one free parameter. The data are given in Table IV and
. _ o . _ the results are fos=7, Ts=T,=7.5+0.1 ands=50, Ts

A standard scaling analysis for finite systef28] is applied =T,=35.0+0.1.

also in this case and the results are summarized in Figs. 5 The results are summarized in the phase diagram in Fig.
and 6. The estimated scaling parameters are given in Tabi For everys the high-temperature phase is disordered and
I. All the estimated exponents are Compatible, within thenonperco|ating; decreasing the temperature, there is a
errors, with the corresponding thermodynamic parametersecond- or first-order phase transiti@epending ors) atT,

for the two-dimensional ISing model and the numerical esti'corresponding to the perco'ation of FK-CK clusters and to
mate for the percolation temperature kgT,/J=2.925 the ordering of Potts variables; at lower temperature there is

S~ [T Tyl 7o~glp". (21)

+0.075, consistent with the estimatesTaf. the SG transitiorwhich in 2D occurs aff=0 [18]). For a
fixed realization of ¢;; } it is possible to shoy24] that each
B. Results fors=7 and 50 critical point is characterized by a diverging critical length.

At T,(s) the linear size of FK-CK clusters associated with

In Fig. 7 we show the Binder parametérfor the PSG the pair connectedness function diverges, whil€g{(s) the

model with s=7 and 50 for system sizels=10-50. The .o oo o' o¢ correlated regions diverges.
fact thatV has a nonvanishing minimum for every size re-

veals that there is a first-order phase transition. In this case It is interesting to note that the behavior Bf(s) can be
P : obtained from the exact expression of the transition tempera-

there is no diverging length; therefore, the scaling analysi X
cannot be applied. This kind of transition is characterized biure of a ferromagnetic @state Potts mode[13] only by

the finite size relationf20] renormalizing the number of states, i.e.,

Ch(To(L),L)=max[Cy(T,L)]~L" (22 To 1

2sa In(1+\2sa)’
(whereD is the Euclidean dimensigrior the maximum of
finite sizeCy(L) (see Table Il and the relation with a=0.803* 0.003(choosingJ=kg).

(24)

TABLE |. Estimated critical exponents and critical temperatufg$or thermodynamic quantitiel!, x,
andCy for the PSG model witls=2.

Thermodynamic

quantity v alv Blv ylv kgTs/J
M 0.9+0.3 0.13:0.06 3.0:0.1
X 1.0+0.3 1.75-0.10 2.9-0.1

Cq 1.0=0.5 0.-0.1 2.9-0.1
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-5 = = 8 ’ 10 20
IV. COMPARISON WITH SPIN-FLIP DYNAMICS a) kel /J b)

_ The MC dynamics used to study the equilibrium proper- - rc 7 psG model: Binder parametérvs dimensionless tem-
ties of the PSG model is the SW cluster MC dynamics. TheperaturekBT/J for (2) s=7 and (b) s=50, for L=10—~50. The
SW dynamics is performed in two steps. The first step is tQngets show the particulars far=40 and 50. Where not shown, the

construct the FK-CK cluster configurati@ given an ISing  errors are smaller than the symbol sizes. Lines are only guides for
and a Potts spin configurati¢s; , o}, activating bonds with  the eyes.

the probability in Eq(2) between NN sites when both Ising
and Potts spins satisfy the interaction and with zero probabilmodel withs=2 is characterized nedr, by diverging cor-
ity otherwise. The second step consists in reversing all theelation times. To compare the efficiency of SW dynamics to
spins in a cluster at the same time with probability 1/2 forthat of SF dynamics we have studied for the case the
each cluster. The sequence of the first and the second stepsrrelation functions at the equilibrium, which for a generic
applied to the whole system constitutes a MC step, which isbservableA is defined as
the chosen unit of time.

This dynamics completely overcomes the problem of
critical slowing down for the unfrustrated spin modgilsf], fa(t)=
while it suffers from a diverging correlation time if applied
to frustrated systems near a critical point. This inefficiency s,
a consequence of the fact that the FK-CK clusters used in th
SW dynamics no longer represent, in frustrated models, th
regions of correlated spins near a critical pgiti] and their
percolation temperaturg, is greater than the critical tem-
perature. In particular, this is true for the SG model for
which an efficient cluster MC dynamics does not yet exist
except for 2D[26], while efficient cluster dynamics have
been proposed for systems with frustration but without dis-
order [27,28. Nevertheless, in SGs for temperatures well . _ .
above the critical temperatuis and neaiT,, the SW dy- whereN is the total number of spins. The normalized corre-
namics is still efficient, consistently with the general obser-ation function is
vation that the cluster dynamics is efficient at least for tem-
peratures above the percolation temperaf@gs. Xscalt) — xsg(t==)

(S(t+1tg) &(tg))
(8(to)?)

here 5(t) =A(t) — (A) andt, is the equilibration time. As
servables we have choose the Potts order paraiviesed
fhe energ)E of the whole system.

We have also studied the time-dependent nonlinear sus-
ceptibility for a quenched interaction configuration

: (25

1 2
XSG<t)=N<[2i si<t+to)si<to>} > (26)

On the other hand, in Ref15] we have shown that the X e 0)— yed =) 27
local spin-flip(SPH MC dynamicd 20] in the case of the PSG

TABLE 1l. Estimated percolation exponents and percolation
temperaturel, for P andS for the PSG model witls= 2. TABLE lll. Maxima of Cy, for s=7 ands=50 for L= 30, 40,

and 50.

Percolation

quantity vp Bplvp Yol vp kgTp/J L 30 40 50

P 0.9+0.2 0.16:0.03 2.95-0.05 max Cy(s=7)/L2 27+3 26x3 33+3

S 0.95+-0.15 1.6:0.2 2.90:0.05  max Cy(s=50)/L2 7.4+0.6 8.4-0.9 7.3-0.7
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TABLE IV. Temperaturegin J/kg units) of maxima ofC, and TABLE V. Integral correlation times for a PSG model with
S for s=7 and 50 forL=10, 20, 30, 40, and 50. =2 andL =30 for the Swendsen-Wan@W) cluster MC dynamics
and local spin-flip(SH MC dynamics for temperatures above and
L 10 20 30 40 50 below T (L =30)=2.95)/Kg .
T s=7 7.8 7.6 7.5 7.5 7.5
T sz?)) 7.9 7.7 75 75 7.52 KgT/J 2.75 3.00 3.25
Tmaxc,,(5=50) 36.56 3557 3492 3490 35.00 4, (SW) 3.08+0.02 3.65-0.03 1.810.01
Trmaxel5=50) 36.56 3560 35.00 3500 3500 7 (SF) 76.8-0.3 575.8-0.6 180.3-0.2
Te(SW) 9.32:0.02 8.53:0.07 4.45-0.04
7e(SF) 19.0:0.1 67.5-0.1 20.950.5
For both the SW and the SF dynamics we have measuret(SW) 9.93-0.07 2.4230.002  1.585:0.001
the integral correlation time defined as 7,(SF) 16.89-0.02 7.06-0.03 3.970.01

tmax

" 2 £(t) (29) The data show that, while the SF correlation timesNbr

0 ’ andE grow abruptly neail, where both thermodynamic and

percolation transitions occur, the SW correlation times only

wheref is the generic correlation function. We have consid-Show a slow trend to increase for decreasing temperatures,
ered systems with lattice sizés<30 at temperatures above P€ing smaller than the corresponding SF data by at least an
and belowT,. The data for the SF dynamics are averagecPrder of magnitude. Even far, , which for a SF starts to be
over 32 different quenched interaction configurations sincd'0nzero belowT, the SW dynamics shows smaller corre-
the local updating of this dynamics strongly depends on théation times. For temperatures well beldWy it is possible to
local fluctuation of the frustration. On the other hand, theS€e that the SW dynamics is characterized by long autocor-
results on global SW dynamics turns out to be “robust” with relation times, like the SF dynamics. Therefore, at least for
respect to the interaction configuration average, in the sendgmperatures not too much beloVy,, the SW dynamics
that the fluctuations of;,,, are within the errors estimated on turns out to be more efficient than local SF dynamics. In
the basis of a single interaction configuration analysis. ~Particular, near the thermodynamic transitionTgtthe SW

The simulations have been done with an annealinglynamics completely overcomes the critical slowing down
method, i.e., with a slow cooling of the system at each temProblem in the PSG model, as for the unfrustrated models,
perature. For the SW cluster dynamics 50° MC steps turn ~ €ven if frustration is present via the random interactions of
out to be enough to equilibrate the system at the considerd®€ Ising spins.
temperatures and the averages are done using the the data for
the following 5x 10 MC steps. For the SF dynamics we V. CONCLUSIONS
have discarded the first 10MC steps(defined as the local
update of any spin in the systérand recorded the data for Precursor phenomena characterize the paramagnetic

1
Ting= lim >

thax—®

5% 10° MC steps. phase of a spin glass. In particular, experiments and local
In Table V we show the results fdr=30. Analogous Monte Carlo simulations show the presence of stretched ex-
results have been found for smaller systems. ponential autocorrelation functions well above the SG tran-

sition temperaturd g [7]. The relation of the onsef* of
these precursor phenomena to any thermodynamic transition
. and the localization oT™* are still matters of debafe’,15].
% Nonpercolating Phase Much numerical evidence on disorderiét] and determinis-
tic frustrated model$10,11 have shown thal* is consis-
L e 2° order critical points tent with the perpolatiqn temperaturg, of the _Fortuin—
§ Kasteleyn—Coniglio-Klein  clusters. In particular, a
4 . N ] generalization of the-J Ising SG to a 3-state Potts SG,
& — 1" order critical points which recovers the SG fos=1, has shown that fos=2,

; like for s=1 [7], theT* =T, hypothesis is numerically veri-

s fied [15]. In this paper, using very efficient cluster Monte
05 k Carlo dynamics, we have shown that in 2D for &1 the
percolation transition corresponds to a real thermodynamic
transition in the universality class of thestate ferromag-

. netic Potts model. In particular, we have considered the cases
Percolating Phase s=2,s=7 and 50, where dl,(s) a second-order and, re-
spectively, a first-order phase transition occurs. Exact renor-

S S S E N E malization group calculations on hierarchical lattidd$]

L 0 20 40 60 80 120% and a mean field analysis for a version of the model without

disorder[17] have shown the same scenario.

FIG. 8. PSG model: Numerical phase diagram in 2D. The data All these results suggest that the percolation transition
are fitted with T,/2s=a/[In(1+2sa)] with a=0.803-0.003 Mmay play a role in the precursor phenomena even in the SG
(choosingJ=kg). Data fors=1/2 ands=1 are from Ref.[25]. case 6=1), where no thermodynamic transition occurs at
Where not shown, the errors are smaller than the symbol sizes. T,. This idea arises from the observation that, even in SGs,

T./(2s)

-
J
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