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Phase transitions in the Potts spin-glass model
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We have studied the Potts spin glass with two-state Ising spins ands-state Potts variables using a cluster
Monte Carlo dynamics. The model recovers the6J Ising spin glass~SG! for s51 and exhibits for alls a SG
transition atTSG(s) and a percolation transition at higher temperatureTp(s). We have shown that for all values
of sÞ1 at Tp(s) there is a thermodynamic transition in the universality class of a ferromagnetics-state Potts
model. The efficiency of the cluster dynamics is compared with that of standard spin-flip dynamics.
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I. INTRODUCTION

In nature there are many examples of glassy systems,
complex systems that exhibit a very slow dynamics that p
vents them from reaching the equilibrium state. In this cl
there is a large variety of systems, such as real glasses,
glasses, supercooled liquids, polymers, granular mate
colloids, ionic conductors, orientational glasses, and vor
glasses@1#. A common feature of these systems is thefrus-
tration, which is a competition due to geometry or ener
constrains.

Experiments on glasses@2# show that, in a temperature
driven transition, precursor phenomena start at a tempera
well above the ideal glass transition. This temperature
pends on experimental conditions and is the onset of s
dynamical anomalies, such as nonexponential relaxa
functions, anomalous diffusion, and cooling-rate-depend
density. Analogous phenomena are present in spin gla
~SGs! @3#, which are a generalization of the Ising mod
where randomly distributed ferromagnetic and antiferrom
netic interactions give rise to frustration. In particular, e
periments@4# and numerical simulations@5# have shown
nonexponential autocorrelation functions below a tempe
ture T* well above the transition temperatureTSG, while
aboveT* only exponential relaxation functions are seen.

To explain this phenomenon, Randeriaet al. @6# have sug-
gested that in the SG the nonexponential regime starts a
Griffiths temperatureTc , i.e., the critical temperature of th
ferromagnetic model, due to the presence of randomly la
unfrustrated regions, allowed by the disorder in the SG
teractions. Campbell and Bernardi@7# have proposed an al
ternative hypothesis in which the onsetT* of nonexponential
behavior coincides with the percolation temperatureTp of
Fortuin-Kasteleyn–Coniglio-Klein@8,9# ~FK-CK! clusters
~defined below!. The idea of Ref.@7# is that in the SG the
accessible phase space is simply connected aboveTp , while
it is not belowTp . Therefore, forT,Tp a local Monte Carlo
~MC! dynamics performs a random walk on a ramified p
colatinglike structure with many time scales, giving rise
PRE 581063-651X/98/58~3!/2753~7!/$15.00
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nonexponential relaxation functions.
SinceTp is less than but close toTc andT* is difficult to

localize, it is not possible to exclude theT* 5Tc hypothesis.
However, numerical results@10,11# on fully frustrated mod-
els, without disorder, where the Randeriaet al. argument
does not apply, are consistent with theT* 5Tp scenario. In
Refs.@10,11# this result is given for both spin-flip and bond
flip dynamics. The latter is strictly related to the bondfrus-
trated percolation~FP! where frustrated loops, i.e., closed
paths of connected bonds covering an odd number of ne
tive interactions, have zero weight@10#. The FP model and
the 6J SG model can be recovered as particular cases
2s-state Potts spin glass~PSG! @12#, respectively, fors
51/2 ands51.

In this paper we will show numerical results on the sta
properties of the PSG model in two dimensions~2D!. For
any s the model exhibits a SG transition at a temperat
TSG(s) ~in 2D TSG50 for anys! and a FK-CK percolation
transition at higher temperatureTp(s). For sÞ1 the higher
transition corresponds to a real thermodynamic transition
ans-state Potts model@13#. To make the algorithm faster w
use the Swendsen-Wang~SW! @14# cluster MC dynamics
that prevent the slowing down for temperatures nearTp(s).
Dynamical properties of the model fors52 are given in Ref.
@15#, where we have shown that autocorrelation times
verge atTp and, as in SG model, nonexponential relaxati
functions are present belowTp . These results on the SG
model @7#, the FP model@10#, fully frustrated systems@11#,
and the PSG model@15# suggest that the FK-CK percolatio
may play a role in the context of precursor phenomena si
below Tp the frustration is present at all length scales
means of the FK-CK percolating cluster, which cannot
clude frustrated loops.

In Sec. II we define the Hamiltonian and review som
theoretical results. In Sec. III we present the numerical
sults for the model in finite dimensions. In Sec. IV we defi
the SW dynamics and compare it with the spin-flip dyna
ics, verifying the efficiency of the cluster dynamics. In Se
V we give the conclusions.
2753 © 1998 The American Physical Society
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II. HAMILTONIAN FORMALISM

The PSG model is defined by the Hamiltonian

H52sJ(
^ i , j &

@ds is j
~e i , jSiSj11!22#, ~1!

where associated with each lattice site is an Ising spinSi
561 and ans-state Potts spins i51, . . . ,s. The sum is
extended over all nearest-neighbor~NN! sites,e i , j561 is a
random quenched variable, andJ is the strength of interac
tion. The model is a superposition of a ferromagnetics-state
Potts model@13# and a6J Ising SG @3# and for ds is j

51

~i.e., s51! recovers the6J Ising SG Hamiltonian.
Following Ref.@12#, it is possible to define FK-CK clus

ters on this model, activating a bond, between NN sites w
both the SG interaction and Potts interaction satisfied, w
probability

p512e22sJ/kBT, ~2!

and defining a cluster as the maximal set of connected bo
For a given set of interactions$e i , j% it is possible to

shown @12# that Z can be expressed in terms of bond co
figurationsC,

Z$e i , j%5 (
$Si ,s i %

e2H/kBT5(
C

Ws~C!, ~3!

where Ws(C)50 if C includes any frustrated loop; othe
wise

Ws~C!5puCu~12p! uAu~2s!N~C!, ~4!

wherep is given in Eq.~2!, N(C) is the number of clusters
in the configurationC, uCu is the number of bonds, an
uCu1uAu is the total number of interactions. Let us obser
that, while the Hamiltonian~1! is defined only for integer
values ofs, Eq. ~3! is meaningful for every value ofs and
for s51/2 Eq. ~3! gives the partition function of bond FP
where a bond configuration without frustrated loops ha
weight W(C)5ebmuCu with bm5 ln(ebJ21), while a bond
configuration with frustrated loops has a zero weight. F
thermore, in the limits→0 Eq. ~3! gives the partition func-
tion of the tree percolation@13#, where any bond configura
tion with a loop is excluded.

An exact renormalization group~RG! analysis on a hier-
archical lattice@16# has predicted for the PSG two critica
temperatures. The lower temperatureTSG(s) corresponds to
a SG transition in the universality class of the6J Ising SG
and the higherTp(s) to a percolation transition in the un
versality class of a ferromagnetics-state Potts model. The
same results are given for the fully frustrated version of
model studied with a mean field approach@17#.

Looking at the partition function~3!, one should expect a
singularity atTp(s), for any sÞ0, due to the singularity in
the number of clustersN(C). Nevertheless, this singularit
has never been observed in the case of SG (s51). In fact,
the RG calculations in the cases51 show a singularity at
TSG for the SG free energy and no singularity atTp(1). This
result is interpreted in Ref.@16# supposing that the free en
ergy of the Hamiltonian~1! has the form
h
h

s.

-

a

-

e

Fs~T!2Fs~Tp!;A~s!@T2Tp~s!#22a~s!, ~5!

whereA(s) is an amplitude that vanishes fors→1 anda(s)
is the specific heat exponent.

III. MONTE CARLO RESULTS

We have done our simulation using the SW Monte Ca
cluster dynamics@14# described in Sec. IV. As we will show
the SW dynamics is faster than standard local dynam
such as spin-flip dynamics, but suffers a slowing down n
the SG critical temperature. Nevertheless, since the SG t
sition in 2D occurs atTSG50 @18# and we are interested in
studying the system near the percolation transition atTp
.TSG, the SW dynamics is particularly indicated.

We have performed numerical simulation of the PS
model fors52, 7, and 50 on a two-dimensional square l
tice with linear sizes ranging fromL510 to 60 lattice steps
and with quenched random interaction configurations$e i j %.
Defining as a MC step an update of all the spins of
system, we have discarded the data of the first 7500
steps and have collected data over 15 000, 25 000, or 50
MC steps, depending on the temperatures and sizes.

For eachs we have calculated the Binder parameter
the energy densityE @19# defined as

V512
^E4&

3^E2&2 , ~6!

where the symbol angular brackets stand for the thermal
erage. This quantity allows us to localize the transition and
distinguish between first-order and second-order phase t
sition. In fact, for a second-order phase transition in the lim
L→` it is V52/3 for all temperatures, while for a first-orde
phase transition it is

2

3
2Vmin5

1

3

~E12E2!2~E11E2!2

~E1
2 1E2

2 !2 , ~7!

where Vmin is the minimum value ofV ~occurring at the
phase transition temperature! and E12E2 is the energy
jump, related to the latent heat, at the same temperature

To estimate the thermodynamic critical exponents for
second-order phase transition we have measured the
order parameter

M5
s maxi~Mi !21

s21
~8!

~wherei 51, . . .s andMi is the density of Potts spins in th
i th state!, the susceptibility

x5F ^M2&2^M &2

N G1/2

~9!

~whereN is the total number of Potts spins!, and the specific
heat

CH5F ^E2&2^E&2

N G1/2

. ~10!
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Furthermore, to estimate the percolation critical expone
we have calculated the percolation probability per spin

P512(
k

knk ~11!

~wherek is the cluster size andnk is the density of clusters o
sizek!, the mean cluster size

S5(
k

k2nk , ~12!

and the number of clusters

Nc5(
k

nk . ~13!

A. Results for s52

In Fig. 1 we show the Binder parameter for the cases
52 for system sizesL510– 60. It is possible to see thatV
for small sizes has a minimum atkBT/J.3.0 and that for
greater sizes it becomes constant for all temperatures, re
ing a second-order phase transition. Therefore, we can m
a standard scaling analysis@20# for the thermodynamic quan
tities.

In particular, by definition of critical exponentsn it is

j;uT2Tsu2n, ~14!

wherej is the correlation length andTs5 limL→` Ts(L) with
Ts(L) the finite size critical temperature of the PSG mod
Analogously to the definitions of the other critical expone
b, g, anda, we get

M;uT2Tsub;j2b/n, ~15!

x;uT2Tsu2g;jg/n, ~16!

CH;uT2Tsu2a;ja/n. ~17!

From the standard scaling analysis applied to finite s
tems@20# we expect forM

FIG. 1. PSG model fors52: Binder parameterV vs dimension-
less temperaturekBT/J for L510– 60. Errors are smaller than th
symbol sizes. Lines are only guides for the eyes.
ts

al-
ke

l.
s

-

M;L2b/n f M„~T2Ts!L
1/n
…, ~18!

where f M(x) is an universal function of the dimensionle
variablex. Analogous scaling functions are expected for t
other thermodynamic quantities. Tuning the values of criti
exponents andTs , it is possible to verify the scaling hypoth
esis, as Eq.~18!, from the MC data. The values for which th
data collapse give the estimates of the critical exponents
of Ts .

In Figs. 2–4 we show the data collapses for system s
L510– 60. The estimated scaling parameters@21# are given
in Table I.

The estimated critical exponents are compatible, wit
the errors, with the expected values for a Potts model w
the s52 state, i.e., an Ising model, in 2D:a50, b51/8
50.125, g57/451.75, andn51 @22#. The estimated criti-
cal temperature iskBTs /J52.9560.15.

For the FK-CK percolation quantities we have describ
the critical behavior ofP andS introducing a percolation se
of critical exponents (ap , bp , gp , andnp) defined by the
relation

jp;uT2Tpu2np, ~19!

FIG. 2. PSG model withs52: Data collapse forM for systems
sizesL510– 60. Temperatures are inJ/kB units. The scaling pa-
rameters are given in the figure.

FIG. 3. PSG model withs52: Data collapse forx for systems
sizesL510– 60. Temperatures are inJ/kB units. The scaling pa-
rameters are given in the figure.
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wherejp is the connectedness length of the clusters andTp
5 limL→` Tp(L), with Tp(L) the finite size percolation tem
perature,

P;uT2Tpubp;jp
2bp /np , ~20!

S;uT2Tpu2gp;jp
gp /np . ~21!

A standard scaling analysis for finite systems@23# is applied
also in this case and the results are summarized in Fig
and 6. The estimated scaling parameters are given in T
II. All the estimated exponents are compatible, within t
errors, with the corresponding thermodynamic parame
for the two-dimensional Ising model and the numerical e
mate for the percolation temperature iskBTp /J52.925
60.075, consistent with the estimates ofTs .

B. Results for s57 and 50

In Fig. 7 we show the Binder parameterV for the PSG
model with s57 and 50 for system sizesL510– 50. The
fact thatV has a nonvanishing minimum for every size r
veals that there is a first-order phase transition. In this c
there is no diverging length; therefore, the scaling analy
cannot be applied. This kind of transition is characterized
the finite size relations@20#

CH„Ts~L !,L….maxT@CH~T,L !#;LD ~22!

~whereD is the Euclidean dimension! for the maximum of
finite sizeCH(L) ~see Table III! and the relation

FIG. 4. PSG model withs52: Data collapse forCH for systems
sizesL510– 60. Temperatures are inJ/kB units. The scaling pa-
rameters are given in the figure.
5
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Tmax~L !2Tmax~`!;L2D ~23!

whereTmax(L) is the temperature of the maximum ofCH ~or
of the mean cluster sizeS! for the sizeL andTmax(`) is the
corresponding value in the thermodynamic limit, i.e., t
corresponding transition temperatureTs(s) @or Tp(s)#.
Therefore,Ts(s) and Tp(s) can be evaluated by linear fit
with one free parameter. The data are given in Table IV a
the results are fors57, Ts5Tp57.560.1 ands550, Ts
5Tp535.060.1.

The results are summarized in the phase diagram in
8: For everys the high-temperature phase is disordered a
nonpercolating; decreasing the temperature, there i
second- or first-order phase transition~depending ons! at Tp
corresponding to the percolation of FK-CK clusters and
the ordering of Potts variables; at lower temperature ther
the SG transition~which in 2D occurs atT50 @18#!. For a
fixed realization of$e i j % it is possible to show@24# that each
critical point is characterized by a diverging critical lengt
At Tp(s) the linear size of FK-CK clusters associated w
the pair connectedness function diverges, while atTSG(s) the
linear size of correlated regions diverges.

It is interesting to note that the behavior ofTp(s) can be
obtained from the exact expression of the transition temp
ture of a ferromagnetic 2s-state Potts model@13# only by
renormalizing the number of states, i.e.,

Tp

2sa
5

1

ln~11A2sa!
, ~24!

with a50.80360.003~choosingJ5kB!.

FIG. 5. PSG model withs52: Data collapses forP for systems
sizesL510– 60. Temperatures are inJ/kB units. The scaling pa-
rameters are given in the figure. The indicesp are omitted for the
critical exponents.
TABLE I. Estimated critical exponents and critical temperaturesTs for thermodynamic quantitiesM , x,
andCH for the PSG model withs52.

Thermodynamic
quantity n a/n b/n g/n kBTs /J

M 0.960.3 0.1360.06 3.060.1
x 1.060.3 1.7560.10 2.960.1

CH 1.060.5 0.060.1 2.960.1
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IV. COMPARISON WITH SPIN-FLIP DYNAMICS

The MC dynamics used to study the equilibrium prop
ties of the PSG model is the SW cluster MC dynamics. T
SW dynamics is performed in two steps. The first step is
construct the FK-CK cluster configurationC, given an Ising
and a Potts spin configuration$Si ,s i%, activating bonds with
the probability in Eq.~2! between NN sites when both Isin
and Potts spins satisfy the interaction and with zero proba
ity otherwise. The second step consists in reversing all
spins in a cluster at the same time with probability 1/2
each cluster. The sequence of the first and the second
applied to the whole system constitutes a MC step, whic
the chosen unit of time.

This dynamics completely overcomes the problem
critical slowing down for the unfrustrated spin models@14#,
while it suffers from a diverging correlation time if applie
to frustrated systems near a critical point. This inefficiency
a consequence of the fact that the FK-CK clusters used in
SW dynamics no longer represent, in frustrated models,
regions of correlated spins near a critical point@12# and their
percolation temperatureTp is greater than the critical tem
perature. In particular, this is true for the SG model
which an efficient cluster MC dynamics does not yet ex
except for 2D@26#, while efficient cluster dynamics hav
been proposed for systems with frustration but without d
order @27,28#. Nevertheless, in SGs for temperatures w
above the critical temperatureTSG and nearTp the SW dy-
namics is still efficient, consistently with the general obs
vation that the cluster dynamics is efficient at least for te
peratures above the percolation temperature@28#.

On the other hand, in Ref.@15# we have shown that the
local spin-flip~SF! MC dynamics@20# in the case of the PSG

TABLE II. Estimated percolation exponents and percolati
temperatureTp for P andS for the PSG model withs52.

Percolation
quantity np bp /np gp /np kBTp /J

P 0.960.2 0.1060.03 2.9560.05
S 0.9560.15 1.660.2 2.9060.05

FIG. 6. PSG model withs52: Data collapses forS for systems
sizesL510– 60. Temperatures are inJ/kB units. The scaling pa-
rameters are given in the figure. The indicesp are omitted for the
critical exponents.
-
e
o

il-
e

r
eps
is

f

s
he
e

r
t

-
l

-
-

model withs52 is characterized nearTp by diverging cor-
relation times. To compare the efficiency of SW dynamics
that of SF dynamics we have studied for the cases52 the
correlation functions at the equilibrium, which for a gene
observableA is defined as

f A~ t !5F ^d~ t1t0!d~ t0!&

^d~ t0!2& G , ~25!

whered(t)5A(t)2^A& and t0 is the equilibration time. As
observables we have choose the Potts order parameterM and
the energyE of the whole system.

We have also studied the time-dependent nonlinear
ceptibility for a quenched interaction configuration

xSG~ t !5
1

N K F(
i

Si~ t1t0!Si~ t0!G2L , ~26!

whereN is the total number of spins. The normalized corr
lation function is

f x5
xSG~ t !2xSG~ t5`!

xSG~0!2xSG~ t5`!
, ~27!

with xSG(0)5N.

FIG. 7. PSG model: Binder parameterV vs dimensionless tem
peraturekBT/J for ~a! s57 and ~b! s550, for L510– 50. The
insets show the particulars forL540 and 50. Where not shown, th
errors are smaller than the symbol sizes. Lines are only guides
the eyes.

TABLE III. Maxima of CH for s57 ands550 for L530, 40,
and 50.

L 30 40 50

maxT CH(s57)/L2 2763 2663 3363
maxT CH(s550)/L2 7.460.6 8.460.9 7.360.7
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For both the SW and the SF dynamics we have meas
the integral correlation time defined as

t int5 lim
tmax→`

1

2
1(

t50

tmax

f ~ t !, ~28!

wheref is the generic correlation function. We have cons
ered systems with lattice sizesL<30 at temperatures abov
and belowTp . The data for the SF dynamics are averag
over 32 different quenched interaction configurations si
the local updating of this dynamics strongly depends on
local fluctuation of the frustration. On the other hand, t
results on global SW dynamics turns out to be ‘‘robust’’ wi
respect to the interaction configuration average, in the se
that the fluctuations oft int are within the errors estimated o
the basis of a single interaction configuration analysis.

The simulations have been done with an annea
method, i.e., with a slow cooling of the system at each te
perature. For the SW cluster dynamics 53103 MC steps turn
out to be enough to equilibrate the system at the consid
temperatures and the averages are done using the the da
the following 53104 MC steps. For the SF dynamics w
have discarded the first 104 MC steps~defined as the loca
update of any spin in the system! and recorded the data fo
53105 MC steps.

In Table V we show the results forL530. Analogous
results have been found for smaller systems.

TABLE IV. Temperatures~in J/kB units! of maxima ofCH and
S for s57 and 50 forL510, 20, 30, 40, and 50.

L 10 20 30 40 50

TmaxCH
(s57) 7.8 7.6 7.5 7.5 7.5

TmaxS(s57) 7.9 7.7 7.5 7.5 7.52
TmaxCH

(s550) 36.56 35.57 34.92 34.90 35.00
TmaxS(s550) 36.56 35.60 35.00 35.00 35.00

FIG. 8. PSG model: Numerical phase diagram in 2D. The d
are fitted with Tp /2s5a/@ ln(11A2sa)# with a50.80360.003
~choosingJ5kB!. Data for s51/2 ands51 are from Ref.@25#.
Where not shown, the errors are smaller than the symbol sizes
ed

-

d
e
e

se

g
-

ed
for

The data show that, while the SF correlation times forM
andE grow abruptly nearTp where both thermodynamic an
percolation transitions occur, the SW correlation times o
show a slow trend to increase for decreasing temperatu
being smaller than the corresponding SF data by at leas
order of magnitude. Even fortx , which for a SF starts to be
nonzero belowTp , the SW dynamics shows smaller corr
lation times. For temperatures well belowTp it is possible to
see that the SW dynamics is characterized by long auto
relation times, like the SF dynamics. Therefore, at least
temperatures not too much belowTp , the SW dynamics
turns out to be more efficient than local SF dynamics.
particular, near the thermodynamic transition atTp the SW
dynamics completely overcomes the critical slowing do
problem in the PSG model, as for the unfrustrated mod
even if frustration is present via the random interactions
the Ising spins.

V. CONCLUSIONS

Precursor phenomena characterize the paramagn
phase of a spin glass. In particular, experiments and lo
Monte Carlo simulations show the presence of stretched
ponential autocorrelation functions well above the SG tr
sition temperatureTSG @7#. The relation of the onsetT* of
these precursor phenomena to any thermodynamic trans
and the localization ofT* are still matters of debate@7,15#.
Much numerical evidence on disordered@7# and determinis-
tic frustrated models@10,11# have shown thatT* is consis-
tent with the percolation temperatureTp of the Fortuin-
Kasteleyn–Coniglio-Klein clusters. In particular,
generalization of the6J Ising SG to a 2s-state Potts SG,
which recovers the SG fors51, has shown that fors52,
like for s51 @7#, theT* 5Tp hypothesis is numerically veri
fied @15#. In this paper, using very efficient cluster Mon
Carlo dynamics, we have shown that in 2D for anysÞ1 the
percolation transition corresponds to a real thermodyna
transition in the universality class of thes-state ferromag-
netic Potts model. In particular, we have considered the ca
s52, s57 and 50, where atTp(s) a second-order and, re
spectively, a first-order phase transition occurs. Exact ren
malization group calculations on hierarchical lattices@16#
and a mean field analysis for a version of the model with
disorder@17# have shown the same scenario.

All these results suggest that the percolation transit
may play a role in the precursor phenomena even in the
case (s51), where no thermodynamic transition occurs
Tp . This idea arises from the observation that, even in S

a

TABLE V. Integral correlation times for a PSG model withs
52 andL530 for the Swendsen-Wang~SW! cluster MC dynamics
and local spin-flip~SF! MC dynamics for temperatures above an
below Tp(L530).2.95J/kB .

kBT/J 2.75 3.00 3.25

tM(SW) 3.0860.02 3.6560.03 1.8160.01
tM(SF) 76.860.3 575.860.6 180.360.2
tE(SW) 9.3260.02 8.5360.07 4.4560.04
tE(SF) 19.060.1 67.560.1 20.960.5
tx(SW) 9.9360.07 2.42360.002 1.58560.001
tx(SF) 16.8960.02 7.0660.03 3.9760.01
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belowTp the frustration starts to be manifested on all leng
scales by means of the FK-CK clusters, which cannot
clude frustrated loops. Therefore, the scenario presente
that for sÞ1 at the percolation temperatureTp there is a
thermodynamic transition with associated dynamical ano
lies that ‘‘vanishes’’ fors51 leaving the dynamical behav
ior unchanged.
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